Feature-based Tree Species Classification Using Hyperspectral and Lidar Data in the Bavarian Forest National Park

نویسندگان

  • Carolin Sommer
  • Stefanie Holzwarth
  • Uta Heiden
  • Marco Heurich
  • Jörg Müller
  • Wolfram Mauser
چکیده

The Bavarian Forest National Park, established in 1970, is a unique area of forests with large nonintervention zones, which promote a large-scale rewilding process with low human interference. Thus, the National Park authority is particularly interested in investigating the structure and dynamics of the forest ecosystems within the park. However, conventional forest inventories are timeconsuming and not able to fully record the heterogeneity of natural forests. Our goal is to develop advanced techniques for tree species mapping based on hyperspectral remote sensing in combination with other remote sensing and in situ measurements that meet the demands of the National Park. This approach needs to be adapted to the heterogeneous appearance of the forest. This work aims at building a model transferable to an area-wide mapping of tree species based on the needs of the Bavarian Forest National Park. It reveals the requirements for tree species mapping and shows which spectral/spatial features and data combinations generate the best results within a Random Forest modelling approach. The study is based on airborne hyperspectral data acquired with the HySpex VNIR-1600 sensor (160 spectral bands, 400 – 990 nm, 1.6 m spatial resolution). Additional full waveform LiDAR data, including a Digital Surface Model, Digital Terrain Model and a Digital Canopy Height Model, were available for the analysis. Individual tree crowns as well as clusters of tree crowns from 13 different tree species were located and identified during a field survey. The field-demarcated tree canopies were used as reference data for creating the feature database. Several preprocessing steps including atmospheric correction, spectral and spatial polishing, bidirectional reflectance distribution function (BRDF) effect correction as well as ortho-rectification of the hyperspectral imagery were conducted before the analysis. A band selection procedure based on principal component analysis, band correlation, and band variance was performed to identify the most appropriate spectral bands for species discrimination, resulting in a set of 53 spectral bands. Seven different combinations of hyperspectral, structural and terrain-specific parameters contained in the feature database were investigated in a Random Forest Modelling approach to ascertain which variables enhance the overall classification accuracy. A classification model using all available parameters in the feature database yielded an overall accuracy that is 17 percentage points higher (94%) compared to using only the preselected spectral bands (77%). For most of the 13 tree species, the final classification model achieved individual class accuracies of more than 90%. The study showed that a tree species feature database consisting of hyperspectral signatures and relatively simple LiDAR derived features has high potential for a forest inventory based on remote DOI: 10.12760/02-2015-2-05 EARSeL eProceedings 14, Special Issue 2, 2015-16: 9 EARSeL Imaging Spectroscopy Workshop, 2015 50 sensing. A model transferable to an area-wide mapping of tree species based on the needs of the Bavarian Forest National Park was established.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data

Accurate classification of tree-species is essential for sustainably managing forest resources and effectively monitoring species diversity. In this study, we used simultaneously acquired hyperspectral and LiDAR data from LiCHy (Hyperspectral, LiDAR and CCD) airborne system to classify tree-species in subtropical forests of southeast China. First, each individual tree crown was extracted using ...

متن کامل

Object-Based Tree Species Classification in Urban Ecosystems Using LiDAR and Hyperspectral Data

In precision forestry, tree species identification is key to evaluating the role of forest ecosystems in the provision of ecosystem services, such as carbon sequestration and assessing their effects on climate regulation and climate change. In this study, we investigated the effectiveness of tree species classification of urban forests using aerial-based HyMap hyperspectral imagery and light de...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Pixel-based Land Cover Classification by Fusing Hyperspectral and Lidar Data

Land cover classification has many applications like forest management, urban planning, land use change identification and environment change analysis. The passive sensing of hyperspectral systems can be effective in describing the phenomenology of the observed area over hundreds of (narrow) spectral bands. On the other hand, the active sensing of LiDAR (Light Detection and Ranging) systems can...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016